O. P. JINDAL SCHOOL, SAVITRI NAGAR

Annual Examination - (2023 – 2024)

Class: XI

MM: 80

Subject: Mathematics

Time: 3 Hrs.

(Fifteen Minutes Extra will be given for reading the Question Paper.)

General Instructions:

- i. This question paper has 5 sections A-E.
- ii. Section A has 20 MCOs carrying 1 mark each.
- iii. Section B has 5 questions carrying 2 mark each.
- iv. Section C has 6 questions carrying 3 mark each.
- v. Section D has 4 questions carrying 5 mark each.
- vi. Section E has 3 case based integrated units of assessment (04 marks each) with 4 sub- parts of 1 mark each.
- vii. All the questions are compulsory. However an internal choice in 2 Qs of 5 marks, 3 Qs of 3 marks, 2 Qs of 2 marks has been provided.
- viii. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

SECTION A

1. The centre of the circle $x^2 + y^2 - 6x + 4y - 12 = 0$ is

- a) (-3, 2)
- b) (3, 2)
- c)(3,-2)
- d) (-3, -2)

2. If (k-1), (2k+1) and (6k+3) are in GP then k=?

- a) 7
- b) 4

- d) 0

3. How many different teams of 7 players can chosen out of 10 players?

- a) 720
- b) 70

- c) 120
- d) 360

4. The slope of the line AB passing through the points A(-2, 3) and B(8, -5) is

- a) $\frac{4}{5}$

- b) $-\frac{4}{5}$ c) $\frac{5}{4}$ d) $-\frac{5}{4}$

5. A die is rolled, the probability that a number 1 or 6 may appear is

- a) $\frac{2}{3}$

6. The coordinate of the foot of perpendicular drawn from a point (6, 7, 8) on x-axis are

- a) (6, 0, 0)
- b) (0, 7, 0)
- c)(0,0,8)
- d)(0, 7, 8)

7. The value of $\sin 105^{\circ}$ is

- a) $\frac{\sqrt{3}+1}{2\sqrt{2}}$
- b) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ c) $\sqrt{3}-1$
- d) $\frac{2-\sqrt{3}}{2\sqrt{2}}$

8. The distance of the point P(4, 1) from the line 3x - 4y + 12 = 0 is

- a) 4 units
- b) 5 units
- c) 6 units
- d) 3 units

9. Let A and B be t	wo sets then $A \cap A$	$(A \cup B)$ is equal to			
a) A	b) B	c) <i>\phi</i>	d) ($(A \cap B)$	
10. Value is i ⁻³⁸ is					
a) i	b) –i	c) 1	d) -1		
11. The domain of	the function f give	en by $f(x) = \frac{x^2 + 2x}{x^2 - x}$	$\frac{+1}{-6}$ is		
		c) R - {3, -2}		3, -2}	
12. If $y = 2\tan x + 5$	$5x$, then $\frac{dy}{dx}$ at $x =$	$\frac{\pi}{4}$ is equal to			
a) 9	b) 4	c) 5		d) 3	
	b) -440x ⁷ y ⁵	c) -1760:			
14. Given $P(A) =$	$\frac{2}{5}$ and P(B) = $\frac{1}{4}$,	then P(A and B), if	A and B are mutu	ally exclusive events is	
a) $\frac{13}{20}$	b) $\frac{3}{5}$	c) $\frac{4}{5}$	d) 0		
15. If ${}^{n}P_{5} = 20 . {}^{n}P_{3}$,			=		
a) 8	b) 9	c) 10	d) 11		
16. The mean devia a) 2.23	ation of the data 2 b) 2.5°	, 9, 9, 3, 6, 9, 4 fron 7	the mean is c) 3.23	d) 3.57	
17. If $ x - 3 < 2$ and a) $1 < x < 5$		solution set is: c) $2 < x < -2$	d) -1 < x < 5		
18. For the parabol a) $F(0, 4)$, $y = 4$		cus and the equation (x, y) , (y) = 4 (x) C) F			
DIRECTIONS: In Reason(R). Choose	V 		tement of Assertic	on(A) is followed by a st	atement of
	(A) and reason(R) s true but reason(R	are true and reason(explanation of assertion(A	
		ny point lie on yz pl			
Reason(R): Dis	stance of any poin	at $P(x_1, y_1, z_1)$ from Q	origin is $\sqrt{{x_1}^2 + y_1}$	$z^2 + z_1^2$.	
	The value of is w		2		

Reason(R): $x \xrightarrow{\lim} a [f(x) . g(x)] = x \xrightarrow{\lim} a f(x) . x \xrightarrow{\lim} a g(x)$

SECTION B

- 21. Find the conjugate of $(6 + 5i)^2$.
- **22.** If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{2, 4, 6, 8\}$, $B = \{2, 3, 5, 7\}$, verify that $(A \cup B)' = (A' \cap B')$
- 23. Find the point on the y axis which is at a distance of $\sqrt{10}$ units from the point (1, 2, 3).
- **24.** Prove that $\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta.$

OR

Find the value of $\sin(-\frac{11\pi}{3})$.

25. Find the equation of ellipse whose vertices are at (± 6.0) and foci at (± 4.0) .

OR

Find the equation of the circle with centre at (-2, 3) and radius is $\sqrt{5}$ units.

SECTION C

- 26. Find the ratio in which YZ- plane divides the line segment formed by joining the points (-2, 4, 7) and (3, -5, 8).
- 27. Differentiate $\left(\frac{5x^2-3x}{x+5}\right)$ with respect to x.
- 28. Find the mean deviation about the mean for the following data.

10	1 30	50	70	90
X _i 10	24	28	16	8

29. Prove that $\sin 3x + \sin 2x - \sin x = 4\sin x \cos \frac{x}{2} \cos \frac{3x}{2}$.

OR

Prove that $\cot 4x(\sin 5x + \sin 3x) = \cot x(\sin 5x - \sin 3x)$.

30. Find the equation of line parallel to the line 3x - 4y + 2 = 0 and passing through the point (-2, 3).

OR

Find the angle between the lines $\sqrt{3} x + y = 1$ and $x + \sqrt{3} y = 1$.

31. Find the coefficient of x^{18} in the expansion of $\left(x^2 + \frac{3a}{x}\right)^{15}$.

SECTION D

32. A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of locus of a point P on the rod, which is 3 cm from the end in contact with the x axis.

OR

An arc is in the form of a semi ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.

33. Find the derivative of cos(x + 1) from first principle.

34. If a, b, c, d are in G.P, show that : $(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2$.

OR

Find the sum of the following series upto n terms. 0.6 + 0.66 + 0.666 + - - -.

35. Find the coordinate of the foot of the perpendicular from the point (-1, 3) to the line 3x - 4y - 16 = 0.

SECTION E

36. Five students Ajay, Shyam, Yojana, Rahul and Vijay are sitting in a playground in a line. Based on the above information, answer the following questions (i) Find the total number of ways of sitting arrangement of five students. 1 (ii) Find the number of arrangements if Ajay and Shyam sits together. 2 OR Find the number of arrangements if Shyam sits in the middle. (iii) Find the number of arrangements if Ajay sits in the first position and vijay sits at last. 1 37. A company produces 500 computers in the third year and 600 computers in the seventh year. Assuming that the production increases uniformly by a constant number every year. Based on the above information answer the following questions: (i) Find the value of the fixed number by which the production is increasing every year. 1 (ii) Find the production in first year. 1 (iii) Find the total production in 10 years. 2 OR Find the number of production in 21st year. **38.** If P(A) = 0.1, P(B) = 0.3 and $P(A \cap B) = 0.05$ then find, (i) P(A U B) 1 (ii) P(A' ∪ B') 2 OR P(A-B)(iii) $P(A' \cap B')$. 1
